• HOME
  • 독일교육연구정보

Science's Breakthrough of the Year: The First Quantum Machine


ScienceDaily (Dec. 16, 2010) — Until this year, all human-made objects have moved according to the laws of classical mechanics. Back in March, however, a group of researchers designed a gadget that moves in ways that can only be described by quantum mechanics -- the set of rules that governs the behavior of tiny things like molecules, atoms, and subatomic particles. In recognition of the conceptual ground their experiment breaks, the ingenuity behind it and its many potential applications, Science has called this discovery the most significant scientific advance of 2010.

 

Physicists Andrew Cleland and John Martinis from the University of California at Santa Barbara and their colleagues designed the machine -- a tiny metal paddle of semiconductor, visible to the naked eye -- and coaxed it into dancing with a quantum groove. First, they cooled the paddle until it reached its "ground state," or the lowest energy state permitted by the laws of quantum mechanics (a goal long-sought by physicists). Then they raised the widget's energy by a single quantum to produce a purely quantum-mechanical state of motion. They even managed to put the gadget in both states at once, so that it literally vibrated a little and a lot at the same time -- a bizarre phenomenon allowed by the weird rules of quantum mechanics.


Science and its publisher, AAAS, the nonprofit science society, have recognized this first quantum machine as the 2010 Breakthrough of the Year. They have also compiled nine other important scientific accomplishments from this past year into a top ten list, appearing in a special news feature in the journal's 17 December 2010 issue. Additionally, Science news writers and editors have chosen to spotlight 10 "Insights of the Decade" that have transformed the landscape of science in the 21st Century.
"This year's Breakthrough of the Year represents the first time that scientists have demonstrated quantum effects in the motion of a human-made object," said Adrian Cho, a news writer for Science. "On a conceptual level that's cool because it extends quantum mechanics into a whole new realm. On a practical level, it opens up a variety of possibilities ranging from new experiments that meld quantum control over light, electrical currents and motion to, perhaps someday, tests of the bounds of quantum mechanics and our sense of reality."
The quantum machine proves that the principles of quantum mechanics can apply to the motion of macroscopic objects, as well as atomic and subatomic particles. It provides the key first step toward gaining complete control over an object's vibrations at the quantum level. Such control over the motion of an engineered device should allow scientists to manipulate those minuscule movements, much as they now control electrical currents and particles of light. In turn, that capability may lead to new devices to control the quantum states of light, ultra-sensitive force detectors and, ultimately, investigations into the bounds of quantum mechanics and our sense of reality. (This last grand goal might be achieved by trying to put a macroscopic object in a state in which it's literally in two slightly different places at the same time -- an experiment that might reveal precisely why something as big as a human can't be in two places at the same time.)
"Mind you, physicists still haven't achieved a two-places-at-once state with a tiny object like this one," said Cho. "But now that they have reached the simplest state of quantum motion, it seems a whole lot more obtainable -- more like a matter of 'when' than 'if.'"

번호 제목 글쓴이 날짜 조회 수
367 [한국생산기술연구원] 하반기 우수인재 채용공고 file 편성열_정보간사 2018.10.10 260
366 EU Trends 창간호 배포 안내 file VeKNI 2014.06.05 5059
365 Science's list of the nine other groundbreaking achievements from 2010 VeKNI 2010.12.19 82438
364 A list of these 10 "Insights of the Decade" VeKNI 2010.12.19 132481
» Science's Breakthrough of the Year: The First Quantum Machine VeKNI 2010.12.19 61219
362 How to soften a diamond VeKNI 2010.12.16 45485
361 Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply-01 file VeKNI 2010.12.16 59607
360 Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply-02 file VeKNI 2010.12.16 19007
359 DLR and NASA conclude bilateral framework agreement VeKNI 2010.12.14 30323
358 a novel way to switch light all-optically on a chip VeKNI 2010.12.08 22706
357 프랑스파스퇴르연구소 현황 file VeKNI 2010.03.16 30914
356 IBM 쮜리히 연구소 소개 (ZRL) VeKNI 2010.03.16 25416
355 BMBF's draft budget for 2010 VeKNI 2010.03.16 30796
354 BMBF’s Budget for 2009 file VeKNI 2010.03.16 27728
353 BMBF’s Budget for 2008 VeKNI 2010.03.16 31586
352 2008년 독일 과학기술 동향 file VeKNI 2010.03.16 24889
351 The year of science 2010 - “The future of energy” file VeKNI 2010.03.15 24437
350 Hightech-Strategie: Germany is gaining more profile as a location for science VeKNI-C 2010.03.04 27796
349 2010 ESCO 관리자 교육 file VeKNI 2010.03.04 27289
348 RWTH Aachen Campus VeKNI 2010.02.22 21693
CLOSE